
Jin Huang (BNL)
Many slides borrowed from Chris Pinkenburg (BNL)

PHENIX 2014 SpinFest at UIUC

July 28, 2PM

Raw data

• Format: "Phenix Raw Data Format" (PRDF)

• Size: 3PB (Run14), ~10PB (All runs)

• Storage: Cache disk (short term) and HPSS (permanent) in RCF

Data
production

• Input: PRDF, Calibration

• Output: nDST (special formatted ROOT file for PHENIX)

• Output size ~1/3 of PRDF, stored in cache disks in RCF

Analysis train
(a.k.a. Taxi)

• Input: nDST, recalibrations, (small) user inputs

• Output: Histograms, smaller DSTs (a.k.a. pDST) and/or ROOT
files contains your TObjects

Final analysis

• Signal characterization, background fraction

• Form asymmetry

• Physics plots

2014 SpinFest Jin Huang <jhuang@bnl.gov> 2

Under PHENIX
analysis frame
a.k.a. Fun4All

Simulation also supported in the same framework
using same reco code as data!

From Dr. Chris Pinkenburg (BNL) 2014 SpinFest 3

DST

Raw Data (PRDF)

PISA Hits

That’s all there is to it (as long as you don’t look under the hood)

Input Managers Output Managers Fun4AllServer

Analysis Modules

DST

Raw Data (PRDF)

Simulated PRDF

Histogram Manager

Root File

From Dr. Chris Pinkenburg (BNL)

2014 SpinFest 4

DST

PRDF

Root files contains
histograms or
user objects

Reset

Input

Analysis
Modules

1

Analysis
Modules

2
…

Analysis
Modules

N

Output

2014 SpinFest Jin Huang <jhuang@bnl.gov> 5

DST

Raw Data (PRDF)

PISA Hits

DST Nodes in
Fun4All server

List of user
TObjects
(histograms)
in Histogram
Manager

 Example of FVTX reco
chart

 Available interactively at
http://www.phenix.bnl.go
v/WWW/offline/doxygen
/html/d9/d96/FVTX.html
#Data_flow

2014 SpinFest Jin Huang <jhuang@bnl.gov> 6

http://www.phenix.bnl.gov/WWW/offline/doxygen/html/d9/d96/FVTX.html
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/d9/d96/FVTX.html
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/d9/d96/FVTX.html
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/d9/d96/FVTX.html
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/d9/d96/FVTX.html
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/d9/d96/FVTX.html

 The Node Tree is at the center of the Phenix software universe (but
it’s more or less invisible to you). It’s the way we organize our data.

 We have 3 different Types of Nodes:
◦ PHCompositeNode: contains other Nodes

◦ PHDataNode: contains any object

◦ PHIODataNode: contains objects which can be written out

◦ PHCompositeNodes and PHIODataNodes can be written to a file and read back

 DST: contains root trees, the node structure is reflected by the branch
names
◦ We currently save 2 root trees in each output file, one which contains the eventwise

information, one which contains the runwise information

 Input Managers put Data on the node tree, output managers save
selected nodes to a file.

 Node tree will be print out every time you run Fun4All server

2014 SpinFest 7 Jin Huang <jhuang@bnl.gov>

TOP (PHCompositeNode)/

 DCM (PHCompositeNode)/

 DST (PHCompositeNode)/

 PhHadCglList (PHIODataNode)

 EventHeader (PHIODataNode)

 Sync (PHIODataNode)

 TrigLvl1 (PHIODataNode)

 PHGlobal (PHIODataNode)

 emcClusterContainer (PHIODataNode)

 AccCluster (PHIODataNode)

 PHCentralTrack (PHIODataNode)

 ReactionPlaneObject (PHIODataNode)

 RUN (PHCompositeNode)/

 RunHeader (PHIODataNode)

 TrigRunLvl1 (PHIODataNode)

 TrigRunLvl2 (PHIODataNode)

 Flags (PHIODataNode)

 DetectorGeometry (PHIODataNode)

 PAR (PHCompositeNode)/

 PRDF (PHDataNode)

Fun4All prints it out after everything is said
and done in the BeginRun(), this is the tree
You see when running our analysis train

These Nodes are create by default

These Nodes are “special” – they serve as
default for the I/O, the objects under the
DST Node are reset after every event to
prevent mixing of events. You can select
objects under the DST Node for saving,
objects under the RUN Node are all saved
in the output file

Fun4All can keep multiple node trees and Input/Output
Managers can override their default Node where to put the
data, but then things get too complicated for this occasion
This is only needed for special applications which are not
mainstream yet (e.g.embedding).

2014 SpinFest 8 Jin Huang <jhuang@bnl.gov>

 Fun4AllDstInputManager: Reads DST’s, if reading
multiple input files it makes sure all data originates
from the same event

 Fun4AllNoSyncDstInputManager: Reads DST’s but
doesn’t check events for consistency (needed when
reading simulated input together with real data for
embedding or if you just feel like screwing up)

 Fun4AllPisaInputManager: Reads PISA Hits files
 Fun4AllPrdfInputManager: Raw Data (PRDF) uses

2014 SpinFest 9 Jin Huang <jhuang@bnl.gov>

 Fun4AllDstOutputManager: Write DST’s

 Fun4AllEventOutputManager: Writes Events in prdf
format (packet selection possible)

 Fun4AllPrdfOutputManager: Write simulated raw
data file.

 Caveat:
You can only write Events if the input are Events (PRDF File)

2014 SpinFest 10 Jin Huang <jhuang@bnl.gov>

 Init(PHCompositeNode *topNode): called once at startup

 InitRun(PHCompositeNode *topNode): called whenever data from
a new run is encountered

 Process_event (PHCompositeNode *topNode): called for every
event

 ResetEvent(PHCompositeNode *topNode): called after each event
is processed so you can clean up leftovers of this event in your code

 EndRun(const int runnumber): called before the InitRun is called
(caveat the Node tree already contains the data from the first event
of the new run)

 End(PHCompositeNode *topNode): Last call before we quit

You need to inherit from the SubsysReco Baseclass
(offline/framework/fun4all/SubsysReco.h) which gives the methods
which are called by Fun4All. If you don’t implement all of them it’s
perfectly fine (the beauty of base classes)

In your class you can implement as many additional methods
As you like, but these are the ones called by Fun4All

2014 SpinFest 11 Jin Huang <jhuang@bnl.gov>

Use the Fun4AllHistoManager to safely save histograms and other TObject of yours
to root files. Protected against problems in ROOT memory management.

#include “Fun4AllHistoManager.h”

MyAnalysis::MyAnalysis()

{

 HistoManager = new Fun4AllHistoManager("FUN4EXAMPLE Analyzer");

 HistoManager->setOutfileName(“myhistos.root”);

}

MyAnalysys::Init(PHCompositeNode *topNode)

{

 myhist1 = new TH1F(….); // myhist1 should be declared in MyAnalysis.h

 HistoManager->registerHistogram(myhist1);

}

This will save your histograms when executing the Fun4AllServer::End() in
the file “myhistos.root”. If you don’t set the filename it will construct a
name from the name of your analysis module

2014 SpinFest 12 Jin Huang <jhuang@bnl.gov>

 The portal to get PHENIX data (few PB) for your analysis
◦ Only way in PHENIX to be guaranteed to get all events from a given

data set
◦ Optimizing for computing resource (disk access/CPU time, etc.)

 You request to run providing a module and macro:
◦ Create analysis module(s) → CVS:offline/AnalysisTrain
◦ Macro to run the taxi → CVS:offline/AnalysisTrain/pat/macro
◦ Check reconstruction against code-checkers

 Automated gatekeeper validity the code and arrange it to
run as soon as possible

 Your defined output files (histograms, DSTs, ROOT objects)
saved to your PWG disk (/spin1 or /spin2)

2014 SpinFest Jin Huang <jhuang@bnl.gov> 13

Official instruction: offline WIKI / Analysis_Train. Current coordinator: Amaresh Datta (UNM)

 To ensure your code behave well, sanity checks and pass
taxi gatekeeper

 Static code checker:
◦ cppcheck : Offline Wiki / Cppcheck
◦ in your code directory calls

cppcheck --enable=all *.h *.C
◦ Make sure no WARNING or ERROR from your code

 Run-time code checker:
◦ valgrind: Offline Wiki / Valgrind
◦ Run your macro using

valgrind -v --num-callers=40 --leak-check=full --error-limit=no --log-
file=valgrind.log --suppressions=$ROOTSYS/root.supp --leak-
resolution=high root.exe ‘YourMacro.C(<parameters>)’

2014 SpinFest Jin Huang <jhuang@bnl.gov> 14

http://www.phenix.bnl.gov/WWW/offline
/doxygen/html/

PHENIX Internal -> Computing -> Doxygen

Auto refresh from CVS

2014 SpinFest Jin Huang <jhuang@bnl.gov> 15

http://www.phenix.bnl.gov/WWW/offline/doxygen/html/
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/
http://www.phenix.bnl.gov/WWW/offline/doxygen/html/

 Ever want to know where is one code?

2014 SpinFest Jin Huang <jhuang@bnl.gov> 16

 How classes/files are inherited/depended?

2014 SpinFest Jin Huang <jhuang@bnl.gov> 17

Auto folded

 Implemented custom copy of doxygen to auto link to
PHENIX CVS

 Works on single file or directory

2014 SpinFest Jin Huang <jhuang@bnl.gov> 18

 Can be build based
on particular
production macro

 E.g. FVTX data flow:

 You are welcome to
build yours!
Welcome to
contacting me to
start

2014 SpinFest Jin Huang <jhuang@bnl.gov> 19

Comments and suggestions are also welcomed!

Fun4All based spin analyzer

2014 SpinFest Jin Huang <jhuang@bnl.gov> 20

